User's Manual

for
PHASE V: STRESS ANALYSIS OF A
DOUBLY-CURVED SKIN WITH A
FLARED NOZZ LE PORT

Contract NAS 8-2698 (RAC 1452-7)

Submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C. Marshall Space Flight Center
Huntsville, Alabama

REPUBLIC AVIATION CORPORATION Farmingdale, L.I., N.Y. 11735

FOREWORD

This report was prepared by Dr. I.U. Ojalvo of Republic Aviation Corporation, Farmingdale, New York, under Contract No. NAS 8-2698, "Stress Analysis of a Doubly-Curved Skin with a Flared Nozzle Port."

The work was administered under the direction of Mr. David Hoppers of the Manufacturing Engineering Laboratory through Mr. Norman Schlemmer of the Propulsion and Vehicle Engineering Laboratory of the George C. Marshall Space Flight Center.

The Republic Program Manager is Dr. R. S. Levy.

ACKNOWLEDGEMENTS

The writer gratefully acknowledges the contribution of Mr. N. Levine for supervising the entire digital programming effort.

TABLE OF CONTENTS

Section		Page
	FOREWORD	ii
I	INTRODUCTION	1
II	INPUT QUANTITIES A. Cylinder-Flare Geometry B. Dome Geometry and Points Matched C. Output Stations	4 4 4 7
III	INPUT NOMENCLATURE	9
IV	INPUT PROCEDURE	12
v	SAMPLE INPUT	20

SECTION I

INTRODUCTION

26048 ABSTRACT

The operation of a digital program to determine the stresses and deflections of flared nozzles in doubly-curved thin, shallow, domes is described. The analysis and computer flow charts upon which the machine program is based are presented in Reference 1.*

The structural problem is idealized as a flared shell of revolution with axis normal to a thin, shallow, parent shell of double curvature (see Figure 1). The mid-surfaces of the two shells are assumed to mate at a common intersecting circle and the entire configuration is subjected to internal pressurization and membrane edge forces.

The sign convention used for deflections, rotations, forces, and moments is presented in Figure 2.

The computer program consists of six separate parts which may be run in one machine pass but must be placed in consecutive numerical order, i.e.

Parts 1, 2, ..., 6. Input for Part 1 follows the program deck for Part 1. Input for Part 2 follows the program deck for Part 2, etc., to Part 6. The input for Parts 2, 3, and 5 are identical. Part 6 differs in only one input card, as described in Section V. Therefore, input instructions for Parts 1, 2, and 3 only, are given in detail.

^{*1. &}quot;Annual Summary Report for Phase V:

Stress Analysis of a Doubly-Curved Skin with a Flared Nozzle Port," Republic Aviation Corporation Report No. RAC 1452-6, 15 May 1965.

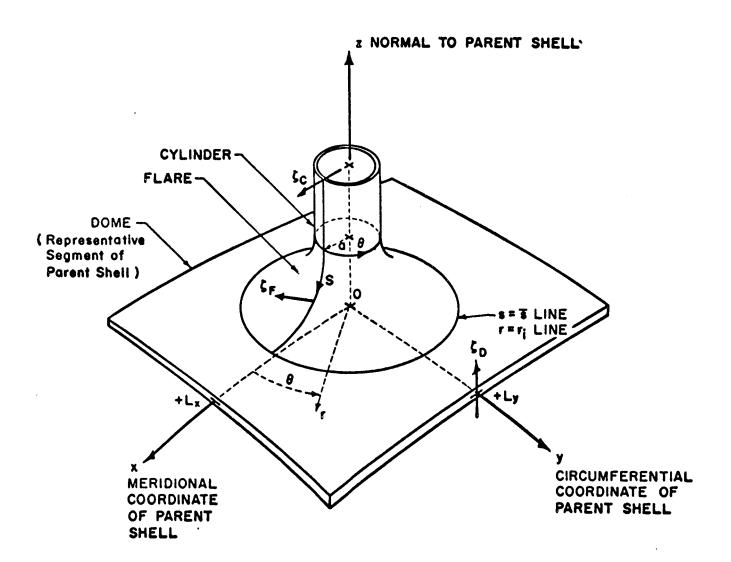


Figure 1. Coordinate Systems

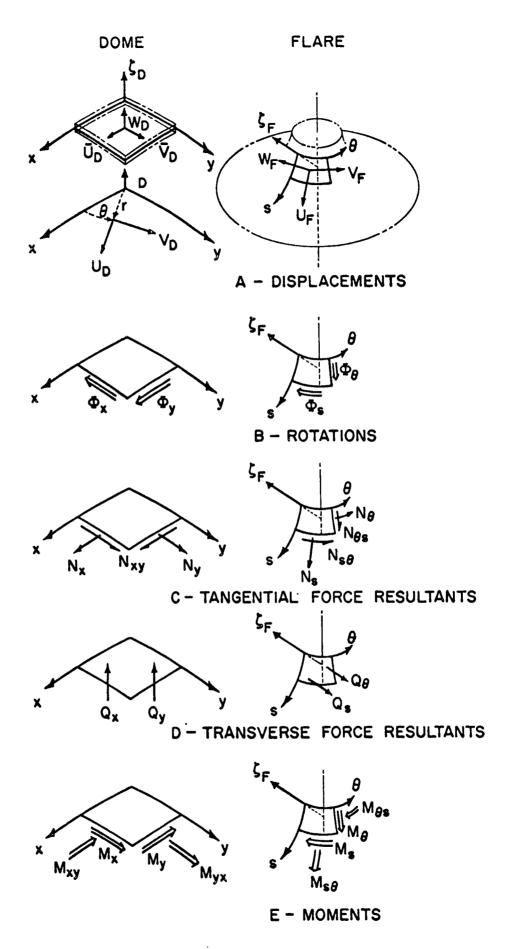


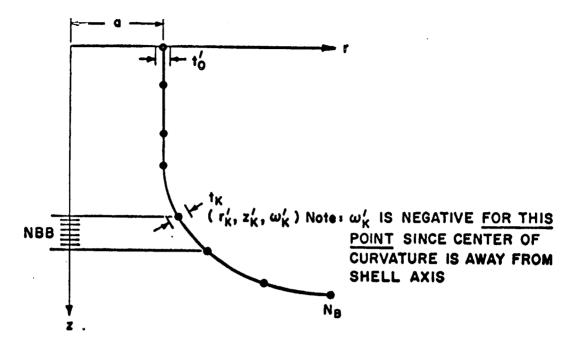
Figure 2. Sign Conventions

SECTION II

INPUT QUANTITIES

A. CYLINDER-FLARE GEOMETRY

The geometric data describing the cylinder-flare configuration may be defined by a series of input coordinates (r_k', z_k') , thicknesses (t_k') , and meridional curvatures (ω_k') , (see Figure 3a), or as a quarter of an ellipse which is tangent to the cylinder and dome (see Figure 3b).


B. DOME GEOMETRY AND POINTS MATCHED

Specification of the dome geometry requires the principal dome curvatures $\frac{1}{R_x}$, $\frac{1}{R_y}$, the dome boundaries (L_x , L_y , r_i), and the thickness (t_D), of the dome. R_x is the radius of curvature of the dome along the x axis of Figure 4, and R_y is the radius of curvature of the dome along the y axis.

The points at which boundary conditions are matched are indicated by dots in Figure 4.

NDY is the number of points along the y axis at which \overline{Q}_x is set equal to zero. The YD are the ordinates of these points. In a similar manner, NDX and NDXP establish the points at which \overline{Q}_y is set equal to zero. These are necessary symmetry conditions which are not automatically imposed by the dome trial functions, and one algebraic equation is developed for each point selected.

NDXP is the number of points along $y = L_y$ at which membrane boundary conditions are satisfied and XPD are the specific points. Similarly, NDYP and YPD relate to membrane conditions along $x = L_x$. Since there are four conditions to be satisfied, 4(NDXP + NDYP) is the number of algebraic equations specified by these points.

a. Input Option 1

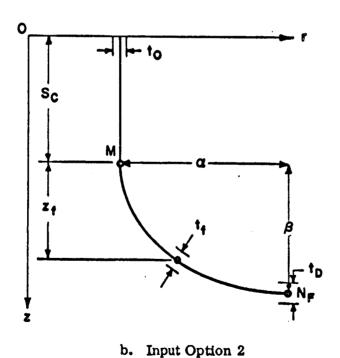


Figure 3. Cylinder-Flare Input Geometry

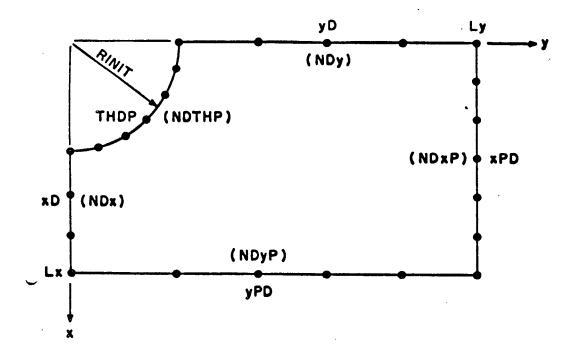


Figure 4. Points at Which Boundary Conditions are Matched

NDTHP is the number of points along the flare-dome intersection at which compatibility and equilibrium are satisfied. The specific points are defined by the THDP. There are eight algebraic equations for each THDP. Thus, 8(NDTHP) equations result from these points.

There are

$$(NDX + NDY) + 4(NDXP + NDYP) + 8(NDTHP)$$

equations in all.

I + 1 and J + 1 are the number of constants introduced by the dome solution and $2\bar{n} + 3$ are the number of flare constants, where I, J, and \bar{n} are input integers $(\bar{n}$ must be even)

$$(I + 1) + (J + 1) + (2\bar{n} + 3)$$

constants in all.

To obtain a unique system of point-matched algebraic constants, it is necessary that $(NDX+NDY)+4(NDXP+NDYP)+8(NDTHP)=(I+1)+(J+1)+(J\bar{n}+3)$. However, a least squares solution is obtained if the number of equations is greater than the number of unknowns.

C. OUTPUT STATIONS

Flare stresses and deflections are computed for all the meridional finite difference stations in the flare and at specified angles θ . The θ angles are determined by θ_0 , $\Delta \theta$, and θ_{ℓ} . Thus the angles selected become

$$\theta_0$$
, θ_0 + $\Delta\theta$, θ_0 + 2 $\Delta\theta$,, θ_ℓ

Dome stresses and deflections are computed for the same angles as given for the flare and at the radial coordinates r as determined by r_i , Δr , L_x , and L_v (see Figure 5).

In addition, it is possible to obtain cartesian coordinate results for the dome by specifying the appropriate option. The input quantities which select these stations are x_0 , Δx , and Δy as shown in Figure 6.

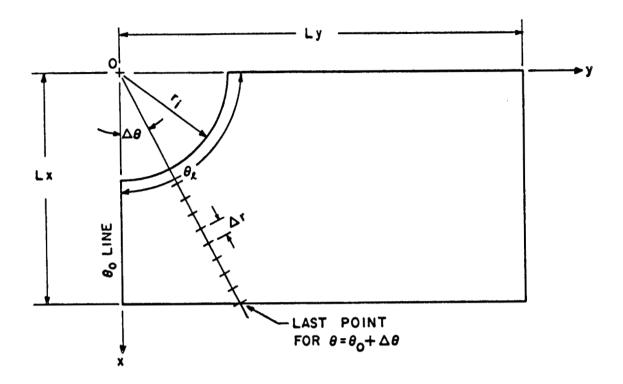


Figure 5. Polar Output Stations for Dome

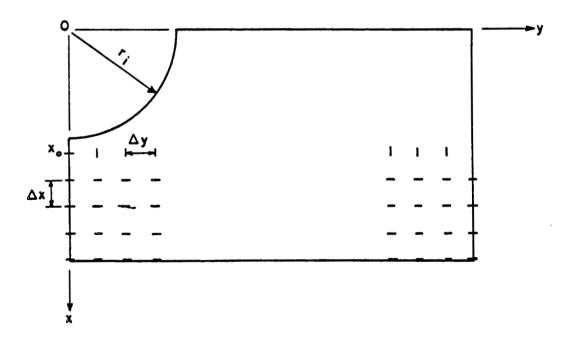


Figure 6. Cartesian Dome Output Stations

SECTION III INPUT NOMENCLATURE

Physical Symbols	Dimensional Units	Program Symbols	Physical Description
E	psi	EF, ED, ELAS	Modulus of elasticity; assumed the same for dome-flare-cylinder configuration
γ		NU, NUD	Poisson's ratio
p	psi	PSI	Internal pressure
rc	in.	RC	Characteristic radius
t _c	in.	TC	Characteristic radius
$\sigma_{f c}$	psi	SIGC	Characteristic stress
n		NBAR	Maximum Fourier index for flare
If	=	use the following ace Figure 9a)	flare input geometry.
$\vec{\mathbf{N}}$		NB	Number of flare input coordinate points
พี้		NRR	Number of finite-difference interva

Ñ		NB	Number of flare input coordinate points
Ñ		NBB	Number of finite-difference intervals into which segment between successive input points is subdivided
$N_{\mathbf{F}}$		NF	Number of flare finite difference intervals = \bar{N} . $\bar{\bar{N}}$
a	in.	A, ACR	Radius of cylinder
r' _k	in.	RPK	Radii of cylinder-flare input points
z'k	in.	ZPK	Vertical coordinate of cylinder- flare input points
t'o	in.	TZP	Thickness at top of cylinder
ω_{o}^{\prime}	in1	OMZP	Curvature at top of cylinder
$\omega_{\mathbf{k}}'$	in1	OMPK	Curvature at cylinder-flare input

If NC Option 2 = 0, use the following flare input geometry.
(Reference Figure 9b)

points

Physical Symbols	Dimensional Units	Program Symbols	Physical Description
α	in.	ALPHA	Horizontal semi-axis (ellipse) for flare geometry
β	in.	BETA	Vertical semi-axis (ellipse) for flare geometry
^z F	in.	ZF	Flare thickness parameter; adjusted so quadratic flare thickness approximates desired thickness variation
s _c	in.	SC	Cylinder length
${f \tilde{t}}_{f D}$	in,	TTDD	Flare thickness parameter
$\mathtt{L}_{\mathbf{x}}$	in.	LX	Dome half-span in x direction
Ly	in.	LY	Dome half-span in y direction
	in.	TD	Dome thickness
1/R	in1	RATIO X	Dome curvature in x direction
t _D 1/R _x 1/R _y	in1	RATIO Y	Dome curvature in y direction
I		ID	Maximum index on series which decays exponentially in y direction
J		JD	Maximum index on series which decays exponentially in x direction
NDY		NDY	Number of points matched along y axis
NDX		NDX	Number of points matched along x axis
NDYP		NDYP	Number of points matched along $y = L_v$
NDXP		NDXP	Number of points matched along $x = L_x$
NDTHP		NDTHP	Number of points matched along $r = r_i$
$\mathbf{r_i}$	in.	RINIT	Radius of flare-dome intersection
Δ r (or Δ R)	in.	DELTAR	Radial increment for output stations for stress and deflection computation
× _o	in.	xo	Cartesian output stations
$\Delta \mathbf{x}$	in.	DELTAX	Increment for cartesian output stations

Physical Symbols	Dimensional Units	Program Symbols	Physical Description
Δу	in.	DELTAY	Increment for cartesian output stations
$\theta_{\mathbf{o}}$	degrees	THETAO	Polar output stations
Δθ	degrees	DTHETA	Polar increment for output stations
$\theta_{m{\ell}}$	degrees	THLAST	Final angle for polar output stations

SECTION IV

INPUT PROCEDURE

The order for inputting the required information on standard IBM cards is as shown in the tables on the following pages.

Key to abbreviations:

II - Input Indicator

IC - Integer Constant

SN - See Nomenclature

FP - Floating Point Format

FXP - Fixed Point Format

FLARE INPUT - PART 1

Description	Program title and date	Intermediate printout flags are located in columns 1 thru 72. If no intermediate printout is desired, leave columns 1 thru 72 blank, i.e.,	$NC(i)$ $\begin{cases} = 0 & \text{no print out} \\ = 1 & \text{printout} \end{cases}$	Same as Card 2 except that it governs printout for flags 73 thru 144.	Path decision flags (options are located in columns 2 and 69):	NC(2) = 0 ellipse curve fit for flare = 1 cubic curve fit for flare	NC(69) = 0 does not compute additional dome output in cartesian coordinates	= 1 does compute additional dome output in cartesian coordinates	II	NS		п	SN	п	NS .		NS	NS NS	SN SN II
A - conversion IC	Ö			IC	ıc				IC	FP		IC	FP	D	FP	FP	P	0	
y		—		<u>п</u>	–		-		<u> </u>			<u> </u>		IC	F4	<u></u>	<u> </u>	<u> </u>	
Quantity	Title	NC	, , , , , , , , , , , , , , , , , , ,	NC	NC				H	មា	٨	7	ď	က	a B	±°	ှ	4	
Columns	1 thru 72	1 thru 72		1 thru 72	1 thru 69				5	1 thru 10	11 thru 20	2	1 thru 10	2	1 thru 10	11 thru 20	21 thru 30	വ	
Card Type	1	N N		က	4				2	9		2	∞	6	10			11	_

Description	NS	= 1), in column 2. If NC(2) = 0, use card types 23 thru 29.	п	NS	NS	п	NS	Up to 7 entries per card											п	NS	Up to 7 entries per card				
ity Format	AR FXP - right adjusted	Use card types 13 thru 22 only if card type 4 has a 1 (i.e., $NC(2) = 1$), in column 2.	l IC	FXP	FXP	IC	FP												IC	FP					
Quantity	NBAR	ru 22 onl	- 2	Z	ΠZ	9	ಡ	r,					r'	r'			•	r.	2	, ₁		•			z, _
Columns	6 thru 10	ard types 13 tha	2	1 thru 5	6 thru 10	2	1 thru 10	11 thru 20	•	•	•	•	61 thru 70	1 thru 10	•	•	•	•	2	1 thru 10	•	•	•	•	61 thru 70
Card Type	12	Use ca	13	14		15	16			1	4								17	18					

Description		Up to 7 entries per card						Up to 7 entries per card			77	olumn 2.								
	SN	Up to 7 en				П	NS	Up to 7 end		II	Blank Card	NC(2) = 0) in co	п	SN	NS	SN	SN	NS	SN	SN
Format	FP					IC	FP			IC		Use card types 23 thru 29 only if card type 4 has a zero (i. e., NC(2) = 0) in column 2.	IC	FP	FP	FP	FP	FP	FP	FP
Quantity	, z				\ \Z'\Z \ \	∞	` , ,°	t,	,¹'\	6		u 29 only if	10	ď	Ω,	β	82	.	တ္ခ	o _t
Columns	1 thru 10	•	v	•	• •	വ	1 thru 10	11 thru 20	•	ည		rd types 23 thr	4 and 5	1 thru 10	11 thru 20	21 thru 30	31 thru 40	41 thru 50	51 thru 60	61 thru 70
Card Type			-			19	20		15	21	22	Use ca	23	24						

Description	SN	п	Blank Card	п	SN	SN	п	Control for matrices inverted in flare solution.	pe 4.	п	SN	SIN			NS	п	
Format	FP	IC		IC	FXP	FXP	IC	FP	Use card types 32 and 33 only if NC(2) = 1 in column 2 of card type 4.	IC	FP	FP			FP	IC	
Quantity	${f t}_{ m D}$	11		12	M	NF	13	10_8	33 only if	14	,3 _°	ε,	•	. •	٤, ٠	15	
Columns	1 thru 10	4 and 5		4 and 5	1 thru 5	6 thru 10	4 and 5	1 thru 10	rd types 32 and	4 and 5	1 thru 10	11 thru 20				4 and 5	
Card Type	25	56	27	28	29		30	31	Use ca	32	33					34	

DOME INPUT - PARTS 2, 4, 5 and 6

Description	Program title and date	Intermediate printout flags are located in columns 1 thru 72. Place a 1 in column 1 for part 6 only.	Intermediate printout flags in colums 1 thru 72.	Place a 2 in column 70 for part 2 input only.	NS									Number of $\vec{Q}_x = 0$ points to be matched along y axis.	Number of $\bar{\mathbf{Q}}_{\mathbf{v}}^{-1}$ 0 points to be matched along x axis.	$\mathbf{x} = \mathbf{L}_{\mathbf{x}}$ number of membrane boundary condition points.	$y = L_{v}$ number of membrane boundary condition points	$r = r_i$ number of compatability points matched.	Maximum Fourier index on flare solutions	Number of finite difference intervals. Must = $\bar{N} \cdot \bar{N}$ if NOPT(2) = 1 in card type 4 of part 1 input.	
Format	A - conversion	IC	IC	IC	FP															FP	
Quantity	Title	NC	NC	NC	٦×	ľ	t,	ж х	R^{-1}	, I	م	떰	>	NDY	NDX	NDYP	NDXP	NDTHP	ıg	Ľ Z	•
Columns	1 thru 72	1 thru 72	1 thru 72	1 thru 72	1 thru 10	11 thru 20	21 thru 30	31 thru 40	41 thru 50	51 thru 60	61 thru 70	1 thru 10	31 thru 40	1 thru 10	11 thru 20	21 thru 30	31 thru 40	51 thru 60	61 thru 70	1 thru 10	
Card Type	н	81	က	4	သ			1	·,			9		2						∞	

Description	SN		·					-	$\int \mathrm{Only} \ \mathrm{if} \ \mathrm{NOPT} \ 69 \neq 0$	Otherwise Blank Card	NS			Stations corresponding to NDX					Stations corresponding to NDY	
Format	FP													FP					FP	_
Quantity	ď	ಇ	, [†] 6	, _P o	ස	r.	^ ک	×°	Δ×	Δy	θ	δ) P	x D ₁	$^{x}\mathrm{D}_{2}^{z}$	•	•	$^{\mathbf{x}D}_{(NDX)}$	yD_1	
Columns	1 thru 10	11 thru 20	21 thru 30	31 thru 40	51 thru 60	1 thru 10	11 thru 20	1 thru 10	11 thru 20	21 thru 30	I thru 10	11 thru 20	21 thru 30	1 thru 10	11 thru 21					•
Card Type	6					10		11		18	12			13			_		14	

Description	Stations corresponding to NDXP Stations corresponding to NDYP	Blank Card Stations corresponding to NDTHP		п	Number of iterations of point matching system,
Format				IC	FXP
Quantity	XPD YPD	ТНРО	-	87	10
Columns			INPUT - PART 3		29 and 30
Card	15 16	17	INPUT -	~	8 3

SECTION V

SAMPLE INPUT

For purposes of illustrating the method of inputting data to the program, consider the photoelastic test model N-4A of Reference 2. The nozzle-sphere geometry, shown and dimensioned in Figure 7a, was subjected to internal pressure which yielded photoelastic patterns that were subsequently measured. The experimental stress results are reproduced in Figure 7b. Poisson's ratio for the epoxy resin test specimen was approximately 0.45.

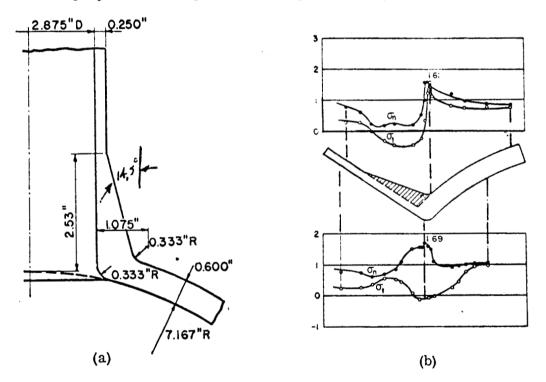


Figure 7. Photoelastic Test Model N-4A of Reference 2

^{2.} Taylor, L.E., Lind, N.C., and Schweiker, J.W., "A Three-Dimensional Photoelastic Study of Stresses Around Reinforced Outlets in Pressure Vessels", Welding Research Council Bulletin No. 51, June 1959.

It is now necessary to idealize the nozzle as a shell and thus determine the middle surface and thickness properties z_i' , r_k' , t_k' , ω_k' . A tabulation of these is given below:

Point on Figure 8	$\mathbf{z_k}'$	$\mathbf{r_k}'$	t_{k}'	$\omega_{\mathbf{k}}'$
0	0	a = 1.5625	.250	0
1	2.50	a = 1.5625	.250	0
2	4.41	a = 1.5625	.250	0
3	4.96	a = 1.5625	.250	0
4	5.43	a = 1.6075	. 375	0
5	5.84	a = 1.6600	.450	0
6	6.87	a = 1.7600	.650	0
7	7.25	a = 1.8200	.830	-2.2222
8	7.34	a = 1.8700	.850	-4.35
9	7.53	a = 2.0700	.680	.174
10	7.61	a = 2.3200	.600	.174

To determine the stresses and deflections analytically, input the following cards.

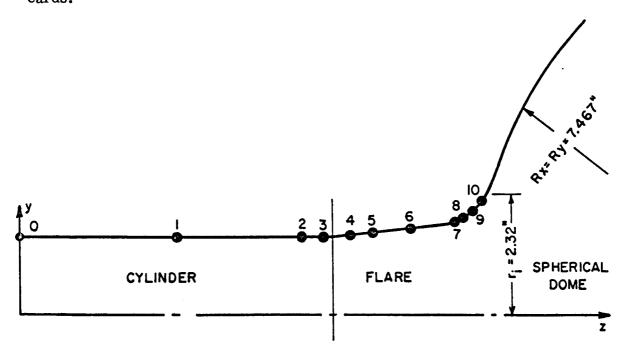


Figure 8. Flare Input Geometry

RATION NOTES WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 Extraction of the control	SUBMITTED BY			PROB.				OF	
MORD 1 WORD 2 WORD 3 WORD 4 WORD 5 WORD 6 WORD 7 WORD 7 WORD 7 WORD 6 WORD 7 W	EXT.	CHARGE NO					DATE		
	STON NOITE BARON								
		4 2 4 4 4 5 7 1 6 5				7		1.0	
	1+ 'H	1	i .	9 3	7 1 20				
	71278								
	BLANK								
	CABIC CORVE A.								
	Input ludicator								
	7 7								
	tugal	5.4							
	¥								
	toori	3							
	8								
		4							
(1) 2 (1) 2 (2) (1) 5 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		5							
(2) 2 (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Ā. Ā								
(2) (2) (2) (3) (3) (2) (3) (3) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	in part la dice to	9							
(20) 2.72	0.70		2 2 1	5 2 9 57 1	7	~		1 26	
(20) 2(2) (20) 2	(0), 2" ((),4	8 2	200		<u>.</u>				
(10) 2(2) 2(3) 2 5 6 6 6 7 6 7 6 7 6 7 7 7 6 7 7 7 6 7	leput In-								
1. 2) \$7.53 1. 4. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	5'(1)		:	-	1				
1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (#(4) # (4) #	,							
1. (1. (2. (2. (2. (2. (2. (2. (2. (2. (2. (2	+ 6841	8							
1. dec. dec. dec. dec. dec. dec. dec. dec	1/2	2 5	5 2	2 5	2,57	305	100		
(1. dec. dec. dec. dec. dec. dec. dec. dec	£12).	8 3	9.5	39	0 7				
(0. Euro Marice (newhy). 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00/	3-							
(o Euro, marraco, lavorata)	BLANK								
10. Electron tention to the control of the control	Ì	90							
1, 4,(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contral or Flare Matrices								
	In part ladice tor	1							
0.7.0	6,000	0	0		0	0	0	- 6	
	(C)	2 2 2 2	4	1/2/4					

L	SUBMITTED BY			PROB.			PAGE	OF			
	EXT.	CHARGE NO.					DATE			į	
<u> </u>	STECK NOTE A STEE	WORD 1	WORD 2	WORD 3	WORD 4	WORD S	WORD	¥ 9	WORD 7	WORD	00
	OFERALION NOIES	101010101010					0 +6 +4 +4 +6 +6 +6 +6 +6 +6 +6 +6 +6 +6 +6 +6 +6	*******	3		
=	TITIE FART 2	5 6 0 6 6 0 10	12 2 1 1 1 1 1 1 1	2 2 2 2 2	- Z - Z - Z - Z - Z - Z - Z - Z - Z - Z						
2											_
8	0000										
=	BANK CARD										
ம	1. 1. to K, K, Z T	ū,	τ,	9	134		2	12.4	-		
9			5 *								
_	MAY NOW MAY MANY MANY MANY		4		Λ,						
-		0 0									
o.	f R. t. C. diane C.)))/					15. 2. 5.				
2		2 . 3 2									
=	Betous (& Mr. C. Day accesses to be as	-						~	-		
12			3.5	0							
<u>-</u>	XQ(1) XQ(4)	2 . 3 2	3 12	~~~	9						
=		2 3 2	3: 3.2	4 3 2							
2		-	S :- 2	U,							
9	1		2	6							
-1											
80	TAPOCA) THOOLA)		0 %								
6											
20											
12											
22											
23											
24											
25											7
92											
12											
28											7
29											
30											7
27.7.9	347E 70 00 00 1746										

L	CHRMITTED BY			8084			14	PAGE	0.5		
	EXT.	CHARGE NO	•				۵				
L	OPERATION NOTES	WORD 1	WORD 2	WORD 3	WORD 4	WORD	Ŋ	WORD 6	WORD 7	WORD	8 0
		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	152 1. 15 - 15 . 15 - 15 - 15 - 15 - 15 - 1	وبإومها وارمادها وإدهار	مجدوداويوراء إداويادا			34.4.4.0.0.1.4.2			1,0
-	PART 3 - BLANK CARD										
2	s to .			0 /			=				
6											
=											
م											
9	PARTS 4 ame 5 (donted) to										
~	Inget of										
-	+ 1.ce/ +										
6											
9	į										
=	CARD 2										
12											
13											
=											
5.											
91											
12											
=											
6											
30											
21											
22											
23											
7.5											
25											
26											
27											
28											=
29											
30											
10 1.1.204											

